English China
Suchen

Nanotechnologie In Flammen entsteht dehnbare Keramik

Autor / Redakteur: Boris Pawlowski* / Dipl.-Chem. Marc Platthaus

Materialstücke aus Metalloxiden sind normalerweise spröde, was ihre Nutzung einschränkt. Materialwissenschaftler der Uni Kiel haben jetzt eine Methode genutzt, bei der sie in einem Ofen dreidimensionale, dehnbare Keramiken erzeugt haben. Warum die so „gebackenen“ Materialien für diverse neue Anwendungen genutzt werden.

Firmen zum Thema

Yogendra Kumar Mishra zeigt dehnbare Keramik aus Zinnoxid.
Yogendra Kumar Mishra zeigt dehnbare Keramik aus Zinnoxid.
(Bild: Claudia Eulitz, CAU)

Kiel – Für die Herstellung nanoskaliger Materialien arbeiten Forschende oft in Ganzkörperanzügen und halten in Hightech-Laboren jedes Staubkorn von ihren sensiblen Erfindungen fern. Dass das aber nicht immer notwendig ist, zeigen Wissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU). Sie konnten erfolgreich Erkenntnisse vom gewöhnlichen Backofen ins Labor übertragen, indem sie Nanostrukturen mittels einfacher aber hoch effektiver Flammentechnologie, genannt Flammentransport-Synthese, herstellten. Dieses „Backen“ von Nanostrukturen erwies sich bereits als großer Erfolg bei der Erforschung von Zinkoxid. Ihre neuesten Erkenntnisse konzentrieren sich auf Zinnoxid, wodurch sich eine Vielzahl neuer Anwendungsmöglichkeiten ergibt.

Aus eindimensionalem eine dreidimensionale Struktur erzeugen

Kompakte Materialstücke von Metalloxiden sind üblicherweise sehr spröde, was ihre Nutzung sehr einschränkt. Sobald die Oxide eindimensionale (1D) Strukturen bilden, zum Beispiel als lange flache Bänder, sind sie schon für sehr viel mehr Anwendungen geeignet. Das hängt mit dem veränderten Verhältnis von Oberfläche zu Volumen zusammen, wodurch sie außergewöhnliche physikalische und chemische Eigenschaften wie ein hohes Maß an Dehnbarkeit entwickeln. „Aber auch eindimensionale Nanostrukturen sind in der Praxis schwer zu handhaben, denn sie lassen sich kaum in andere Technologien integrieren. Um dieses Problem zu beheben, wollten wir aus eindimensionalem Zinnoxid eine dreidimensionale (3D) Struktur entwickeln. Heraus kam eine flexible Keramikstruktur, die die meisten Eigenschaften ihrer nanoskaligen Basis beibehalten hat. Dadurch kann sie für vielfältigste Anwendungen eingesetzt werden. Wir freuen uns sehr, dass unsere erst kürzlich anhand von Zinkoxid entwickelte Flammentransport-Synthese, jetzt die Herstellung von 3D-Netzwerken aus Zinnoxid ermöglicht“, erklärt Dr. Yogendra Kumar Mishra, Gruppenleiter in der Arbeitsgruppe „Funktionelle Nanomaterialien“ an der Kieler Universität und Erstautor der Studie.

Bildergalerie
Bildergalerie mit 5 Bildern

„Das Besondere ist die Struktur der einzelnen Band-ähnlichen Elemente, die bei der Synthese aus Zinnoxid entstehen. Keramik, die mithilfe von Zinkoxid produziert wird, bildet sehr kurze Tetrapodenstrukturen aus. Zinnoxid bildet dagegen lange flache Strukturen, vergleichbar mit Bandnudeln“, meint Prof. Rainer Adelung, Professur „Funktionelle Nanomaterialien“. „Und diese langen flachen Nudeln wachsen in einer speziellen Art zusammen: Der Ofen für die Synthese hält die Temperatur immer kurz unter dem Schmelzpunkt von Zinnoxid. Somit entstehen durch eine kinetische anstelle einer thermodynamischen Kontrolle Verbindungsstellen zwischen den Bändern. Diese Verbindungsstellen werden in einen bestimmten Winkel gezwungen, die strengen geometrischen Regeln folgen. Das basiert auf den sogenannten Zwillingsdefekten, wie wir durch spätere Simulationsstudien bestätigen konnten“, ergänzt Professor Lorenz Kienle, Leiter der Arbeitsgruppe „Synthese und Realstruktur“. Ihre Erkenntnisse über die 3D-Zinnoxid-Struktur, also die zusammengewachsenen Nudeln, konnten die Wissenschaftler anhand eines Transmissionselektronenmikroskops nachvollziehen.

Flammentransport-Synthese ermöglicht neue Anwendungen

„Das 3D-Zinkoxid-Netzwerk weist Eigenschaften wie zum Beispiel elektrische Leitfähigkeit, Stabilität bei hohen Temperaturen oder eine sehr weiche und dehnbare Struktur auf“, beschreibt Mishra. Dadurch sei es ideal geeignet für diverse technische Anwendungen. Tragbare elektronische Sensoreinheiten haben die Wissenschaftler beispielsweise schon herstellen können. Diese ließen sich, laut Mishra, für Solarzellen oder bei der Gasdetektion einsetzen: „Bisher haben wir uns vor allem Sensortechnik angeschaut. Genauso möglich sind aber auch flexible und dehnbare elektronische Geräte, Antriebselemente, Batterien, intelligente Kleidung oder Opfertemplate für die Herstellung neuer Materialien.“ Diese Erkenntnisse entstanden in Kooperation mit einem Forschungsteam um Professor Ion Tiginyanu von der Technischen Universität Moldawiens.

Die drei Kieler Wissenschaftler sind sich sicher: „Derartige 3D-Netzwerk-Materialien aus Zinnoxid mit festen geometrischen Strukturen und entstanden aus der Flammentransport-Synthese sind die Zukunft für die Herstellung von Nanomaterialien und deren Anwendungen.“

Originalpublikation: Three dimensional SnO2 nanowire networks for multifunctional applications: From high temperature stretchable ceramics to ultraresponsive sensors; Ingo Paulowicz, Viktor Hrkac, Sören Kaps, Vasilii Cretu, Oleg Lupan, Tudor Braniste, Viola Duppel, Ion Tiginyanu, Lorenz Kienle, Rainer Adelung, Yogendra Kumar Mishra, Advanced Electronic Materials; DOI: 10.1002/ aelm.201500081

* Dr. B. Pawlowski, Christian-Albrechts-Universität zu Kiel, 24098 Kiel

(ID:43444761)