Suchen

Femtosekundenspektroskopie Ultraschnelle Prozesse in der Quantenphysik aufgelöst

| Autor/ Redakteur: Barbara Gigler* / Dipl.-Chem. Marc Platthaus

Eine Billionstel Sekunde – Zeitspannen, mit denen sich Forscher in der Quantenphsyik beschäftigen sind so kurz, dass sie nur mit ganz speziellen technischen Aufbauten untersucht werden können. Wissenschaftler TU Graz haben jetzt mit der Femtosekundenspektroskopie analysiert, was in einem suprafluiden Heliumtröpfchen abläuft, wenn in dessen Inneren ein Atom fotodynamisch angeregt wird.

Firmen zum Thema

Markus Koch (3. von links), Bernhard Thaler (4. von links) mit Institutsvorstand Wolfgang Ernst (ganz rechts) und dem gesamten Team im Femtosekunden-Laser-Labor am Institut für Experimentalphysik der TU Graz.
Markus Koch (3. von links), Bernhard Thaler (4. von links) mit Institutsvorstand Wolfgang Ernst (ganz rechts) und dem gesamten Team im Femtosekunden-Laser-Labor am Institut für Experimentalphysik der TU Graz.
(Bild: Lunghammer - TU Graz)

Graz/Österreich – Manch einem kann es nicht schnell genug gehen: Markus Koch, Associate Professor am Institut für Experimentalphysik der TU Graz, konzentriert sich in seiner Forschungsarbeit auf Prozesse in Molekülen und Clustern, die auf Zeitskalen von Pikosekunden (10-12 Sekunden) und Femtosekunden (10-15 Sekunden) ablaufen. Jetzt ist Koch und seinem Team ein Durchbruch auf dem Weg zu Erforschung völlig neuartiger molekularer Systeme gelungen: Mittels Femtosekundenspektroskopie, die es ermöglicht ultraschnelle Prozesse zeitaufgelöst zu messen, konnten die Grazer Forscher genau beschreiben, was in einem supraflüssigen, rund fünf Nanometer großen Heliumtröpfchen nach Fotoanregung eines Atoms im Inneren der Tröpfchen passiert.

Markus Koch erklärt den wegweisenden Ansatz: „Unser Institut hat unter Vorstand Wolfgang Ernst eine lange Tradition in der Herstellung und Untersuchung von neuen Systemen und Clustern in einem Nanometer großen Quantenfluid. Diese Expertise kombiniere ich in unserer Forschungsarbeit jetzt mit der Methode der Femtosekundenspektroskopie. Nur so konnten wir die Prozesse, die durch Photoanregung ausgelöst werden, zeitaufgelöst beobachten, messen und deren Dynamik beschreiben. Damit sind wir weltweit die erste Forschungsgruppe, der dies gelungen ist.“

Bildergalerie

Eine Methodik voller Superlative

Um diesen fundamentalen Prozess, der auf einer ultrakurzen Zeitskala von nur einer Billionstel Sekunde abläuft zu untersuchen, greift das Team rund um Markus Koch auf die Femtosekundenspektroskopie zurück. Diese Methode ermöglicht Momentaufnahmen von Atombewegungen basierend auf dem Anregungs-Abfrage-Prinzip (englisch pump-probe). Als Versuchsanordnung wird ein einzelnes Indiumatom in ein winziges Heliumtröpfchen eingebracht. Das Indiumatom wird dann mit einem kurzen Laserpuls angeregt (pump) und überträgt Energie auf das umgebende Helium, das in eine kollektive Schwingung versetzt wird. Ein zeitverzögerter zweiter Lichtblitz fragt dann diese dynamische Information des Systems ab (probe). Bernhard Thaler, der als Doktorand am Institut für Experimentalphysik maßgeblich an der Forschungsarbeit beteiligt ist, erklärt was passiert: „Wenn wir das Atom im Heliumtröpfchen fotodynamisch anregen, dehnt sich seine Elektronenhülle aus und die es umgebende Blase vergrößert sich innerhalb einer Pikosekunde nach Stimulation. Wir beobachten weiter, dass das Indiumatom nach etwa 50 bis 60 Pikosekunden gänzlich aus dem Tröpfchen ausgeworfen wird. Genaue Erkenntnisse zu diesen Dynamiken konnten wir jetzt durch die zeitaufgelöste Beobachtung des Prozesses erstmals gewinnen.“ Ein Prozess, der geprägt ist von Superlativen: Von einer ultrakurzen Zeitskala im Femtosekunden-Bereich, in der die Teilchenbewegungen ablaufen und von Heliumtröpfchen mit nur wenigen Nanometern Durchmesser (was weniger als einem Tausendstel eines Haardurchmessers entspricht), die auf eine Temperatur von 0,4 Kelvin über dem absoluten Nullpunkt gekühlt werden. Mittels einer Simulationssoftware konnte das Team diesen Prozess in einer Simulation sehr anschaulich darstellen.

Vom Proof of Concept zur Anwendung auf komplexe Moleküle

Markus Koch und seinem Team gelingt mit diesem Forschungserfolg der eindrückliche Nachweis, dass die ultraschnellen, elektronischen und nuklearen Dynamiken von Teilchen im Inneren von superfluidem Helium beobachtet und simuliert werden können. Nach diesem Forschungserfolg denkt Markus Koch aber schon an die Zukunft. „Heute experimentieren wir noch mit einzelnen Atomen“, sagt Koch, „aber nach diesem Proof of Concept nähern wir uns mit großen Schritten der Anwendbarkeit von Helium-Nanotropfen für die Untersuchung fotoinduzierter Prozesse in bisher unbekannten oder fragilen molekularen System mit technologischer oder biologischer Relevanz.“

Originalpublikation: Bernhard Thaler, Sascha Ranftl, Pascal Heim, Stefan Cesnik, Leonhard Treiber, Ralf Meyer, Andreas W. Hauser, Wolfgang E. Ernst & Markus Koch; Femtosecond photoexcitation dynamics inside a quantum solvent; Nature Communications, volume 9, Article number: 4006 (2018)

* B. Gigler, Technische Universität Graz, 8010 Graz/Österreich

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de (ID: 45530922)