Suchen

Borstenwürmer Die Evolution des Auges

| Autor/ Redakteur: Nadja Winter / Dipl.-Chem. Marc Platthaus

Die Larven des marinen Borstenwurms Platynereis dumerilii orientieren sich am Licht. In ihren ersten Lebenstagen schwimmen sie ins Helle, um sich mit oberflächennahen Meeresströmungen zu verbreiten. Später wenden sie sich vom Licht ab: Sie schwimmen zum Meeresgrund, wo sie zu erwachsenen Borstenwürmern heranreifen. Wissenschaftler des Max-Planck-Instituts für Entwicklungsbiologie haben jetzt herausgefunden, dass für diesen Orientierungswechsel zwei unterschiedliche Sehsysteme verantwortlich sind.

Firmen zum Thema

Eine drei Tage alte Larve besitzt mehrere Wimpernbänder zum Schwimmen sowie drei Borstenpaare, mit denen sie sich am Untergrund festhalten kann (der Vorderteil des Tieres zeigt nach oben).
Eine drei Tage alte Larve besitzt mehrere Wimpernbänder zum Schwimmen sowie drei Borstenpaare, mit denen sie sich am Untergrund festhalten kann (der Vorderteil des Tieres zeigt nach oben).
(Bild: MPI f. Entwicklungsbiologie/ N. Randel)

Tübingen – Fototaxis, die lichtabhängige Bewegung, ist bei den Larven wirbelloser Meerestiere weit verbreitet. Viele wechseln dabei im Laufe ihrer Entwicklung die Orientierung: Aus der positiven, also zum Hellen gerichteten Fototaxis wird eine negative, vom Licht abgewandte Fototaxis. Wie die marinen Winzlinge dies bewerkstelligen ist noch nicht im Detail verstanden. Doch zumindest für die Larven von Platyneris dumerilii kann Gáspár Jékely, Leiter der Forschungsgruppe „Neurobiologie des marinen Zooplanktons“, nun mit Sicherheit sagen: „Das Richtungsschwimmen ändert sich mit dem Augentyp. Wenn die Larven nach wenigen Tagen ihre ersten, sehr einfachen Augen nicht mehr nutzen, sondern auf eine weiter entwickelte Version zugreifen können, ändern sie auch ihr Verhalten. Statt ausschließlich zum Licht zu schwimmen, bewegen sie sich jetzt auch davon weg.

In den ersten beiden Lebenstagen besitzt der Borstenwurm-Nachwuchs die einfachsten Augen der Welt: Auf beiden Seiten der Kopfregion sitzt jeweils eine einzelne Lichtsinneszelle, die von einer Pigmentzelle abgeschirmt wird. Wie Jékely bereits 2008 gemeinsam mit seinen Kollegen vom European Molecular Biology Laboratory (EMBL) in Heidelberg herausgefunden hat, ist diese Lichtsinneszelle direkt mit dem Antriebsmotor der Larven verbunden, einem Wimpernkranz, der wie ein Kragen unterhalb der Kopfregion sitzt. Fällt Licht auf die Sinneszellen, beginnen sich die Larven spiralförmig vorwärts zu schrauben – immer in Richtung des Reizes.

Bildergalerie

Diese primitiven Augenflecken haben jedoch bereits nach drei Tagen ausgedient und werden nicht mehr benutzt. Dafür entstehen weiter oben am Kopf zwei neue, fortschrittlichere Augenpaare – die Vorläufer der Sehorgane erwachsener Borstenwürmer. Sie besitzen mehrere Lichtsinneszellen, einen Pigmentbecher und sogar eine einfache Linse. Außerdem entwickelt sich ein einfaches neuronales Netzwerk, das den Lichtreiz verarbeitet und weiterleitet.

Forscher erstellen neuronale Karte

Die Wissenschaftler in Jékelys Team haben dieses Neuronengeflecht mithilfe des Elektronenmikroskops genauer unter die Lupe genommen. So konnten sie eine Karte des visuellen Netzwerks einer drei Tage alten Larve erstellen. Sie identifizierten 71 Neurone, die über mehr als 1000 Nervenzellverbindungen, so genannte Synapsen, miteinander verknüpft sind. Dabei zeigte sich, dass das Lichtsignal zwar weiterhin an den Wimpernkranz weitergeleitet wird, jedoch kommt es zusätzlich auch an der Rumpfmuskulatur der Larve an. Außerdem sind die Augen der beiden Körperhälften miteinander vernetzt.

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de (ID: 42735660)