Suchen

Grundlagenforschung

Begehrte Verbindung zur Herstellung von innovativen Molekülen

| Redakteur: Alexander Stark

Chemiker der Westfälischen Wilhelms-Universität (WWU) haben eine neue, leicht durchführbare Synthesemethode zur Herstellung von Fluor-tragenden dreidimensionalen "gesättigten" molekularen Ringstrukturen entwickelt. Die Methode kann eine große Bedeutung für die effiziente Herstellung von neuen Molekülen und somit für den Zugang zu neuartigen Medikamenten, Pflanzenschutzwirkstoffen und Materialien haben.

Firmen zum Thema

"Unsere Publikation ist ein Durchbruch. Sie kann eine große Bedeutung für die effiziente Herstellung von neuen Molekülen und somit für den Zugang zu neuartigen Medikamenten, Pflanzenschutzwirkstoffen und Materialien haben", so die Einschätzung von Frank Glorius.
"Unsere Publikation ist ein Durchbruch. Sie kann eine große Bedeutung für die effiziente Herstellung von neuen Molekülen und somit für den Zugang zu neuartigen Medikamenten, Pflanzenschutzwirkstoffen und Materialien haben", so die Einschätzung von Frank Glorius.
(Bild: WWU/Peter Grewer )

Münster — Farben, Medikamente und funktionale Materialien – solche Produkte basieren häufig auf innovativen, von Chemikern entwickelten Molekülen. Zu ihrer Herstellung stehen den Experten viele chemische Reaktionen zur Verfügung — allerdings mit Einschränkungen. Beispielsweise sind fluorierte Verbindungen, also Moleküle, die mindestens ein Fluoratom enthalten, häufig schwer herstellbar.

Dabei sind sie von herausragender Bedeutung beispielsweise bei der Entwicklung von Wirkstoffen, weil sie oft ungewöhnliche chemische Eigenschaften haben. Daher ist die Suche nach neuen Wegen, um solche Verbindungen herzustellen, wichtig.

Die von den Münsteraner Forschern entwickelte Herstellungsmethode startet mit flachen, "aromatischen" und damit besonders stabilen Ringverbindungen aus Kohlenstoff, die Fluoratome tragen. Die von den Münsteranern genutzten Startmoleküle sind günstig im Handel erhältlich oder leicht herzustellen.

Durchbruch mit Katalysatoren

Mithilfe eines Katalysators gelang den Chemikern die Übertragung von Wasserstoffatomen (Hydrierung) gezielt an eine Seite des Ringsystems. Als Katalysatoren bezeichnen Chemiker und Biochemiker Enzyme oder andere Moleküle, die einzelne Reaktionsschritte beschleunigen oder erst möglich machen.

Eine gezielte Übertragung ermöglicht die Steuerung der Produkteigenschaften, beispielsweise der Löslichkeit, des Aggregatzustandes oder — wie hier besonders wichtig — der Polarität. Ein Molekül ist "polar", wenn innerhalb des Moleküls eine Ladungstrennung in negativ und positiv geladene Molekülfragmente vorliegt. In den nun synthetisierten Produkten befinden sich die eher positiv geladenen Wasserstoffatome auf der einen Seite und die eher negativ geladenen Fluoratome auf der anderen Seite des Rings.

Vom Startmolekül zum gewünschten Produkt

Die Gruppe um Frank Glorius nutzte viele verschiedene fluorierte aromatische Verbindungen als Startmoleküle und setzte sie erfolgreich in die gewünschten Produkte um. "Es ist aus zwei Gründen überraschend, dass unsere Methode klappt", unterstreicht Frank Glorius.

"Die gebundenen Fluoratome setzen die Reaktivität der ohnehin wenig reaktionsfreudigen aromatischen Startverbindungen in der katalytischen Hydrierung noch weiter herab. Dies gilt besonders, wenn mehrere Fluoratome an den aromatischen Ring gebunden sind. Noch gravierender ist allerdings, dass typischerweise die Kohlenstoff-Fluor-Bindungen die Reaktion nicht überstehen und das Fluor abgespalten wird." In mehreren Studien sei dies in der Vergangenheit beobachtet worden. Bei der neuen Methode dagegen tolerieren die Fluoratome die katalytische Hydrierung.

Bildergalerie

"Wir haben ein Katalysatorsystem gefunden, das äußerst kraftvoll ist, also die aromatische Stabilisierung überwindet. Gleichzeitig ist es besonders mild — die Kohlenstoff-Fluor-Bindungen bleiben erhalten." Die münsterschen Chemiker setzten als Katalysator eine Kombination aus dem Edelmetall Rhodium und einem besonders elektronenreichen Carben-Liganden (ein spezielles "metallbindendes" Molekül) ein, der die Eigenschaften des Katalysators entscheidend prägt.

Erstautor Mario Wiesenfeldt fasst zusammen: "Die neue Methode erlaubt einen unerwartet einfachen Zugang zu einem faszinierenden Strukturmotiv: zyklisch, gesättigt und selektiv auf einer Seite fluoriert. Die Produkte der Reaktion zeichnen sich meist durch eine hohe Polarität aus."

In einem Schritt und in größeren Mengen hergestellt

Zum Hintergrund: Die Verbindung "all-cis-1,2,3,4,5,6-Hexafluorcyclohexan", bei der der gesättigte Kohlenstoffsechsring die maximal mögliche Zahl von sechs Fluoratomen auf der gleichen Seite des Ringes trägt, zählt zu den polarsten derzeit bekannten organischen Verbindungen. Diese Verbindung wurde erstmals im Jahr 2015 von Prof. David O’Hagan von der University of St. Andrews in Schottland hergestellt. Dabei benötigte er für die Synthese ein aufwendiges zwölfstufiges Verfahren.

Das münstersche Team kann diese Verbindung sowie viele ähnliche Moleküle nun erstmals bequem in einem Schritt und daher auch in größeren Mengen herstellen.

Asymmetrische Hydrierungen von Aromaten als Herausforderung

"Die Hydrierung ist eine attraktive und häufig sehr saubere Herstellungsmethode", unterstreicht Frank Glorius. „Ein besonders prominentes Beispiel ist die Ammoniaksynthese nach dem Haber-Bosch-Verfahren, also die Hydrierung von Stickstoff, für die über ein Prozent des Weltenergiebedarfs benötigt wird. Sie ist von fundamentaler Bedeutung für die Welternährung, weil sie beispielsweise für die Herstellung von Pflanzendünger sehr wichtig ist.“

Die Bedeutung spiegele sich auch darin, dass bereits drei Nobelpreise für diese Thematik vergeben wurden (Fritz Haber 1918, Carl Bosch 1931, Gerhard Ertl 2007). Ebenso wichtig sei aber auch die Hydrierung organischer Verbindungen, die zuletzt 2001 mit einem Nobelpreis für die asymmetrische Hydrierung ausgezeichnet wurde (William S. Knowles und Ryoji Noyori). Chemoselektive oder asymmetrische Hydrierungen von aromatischen Verbindungen seien allerdings nach wie vor besonders herausfordernd.

Die Studie von Prof. Dr. Frank Glorius, Mario Wiesenfeldt, Dr. Zackaria Nairoukh und Dr. Wei Li ist in der Fachzeitschrift "Science" online veröffentlicht.

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de (ID: 44861565)