In Deutschland sterben jedes Jahr mehrere hundert Menschen durch die toxische Wirkung von Kohlenmonoxid. Ein Internationales Forscherteam hat nun ein neues Konzept entwickelt, um die Wegstrecken optischer Signale, die auf einem Silizium-Chip geführt werden, drastisch zu vergrößern. Nach Angaben der Forscher ist damit ein Meilenstein in Richtung miniaturisierter Gassensoren erreicht, die zukünftig kostengünstig beispielsweise in Mobiltelefone eingebaut werden könnten, um ihre Besitzer als Frühwarnsystem jederzeit vor gefährlichen Gasen zu warnen.
Miniaturisierte Gassensoren könnten künftig kostengünstig beispielsweise in Mobiltelefone eingebaut werden, um ihre Besitzer jederzeit vor gefährlichen Gasen wie Kohlenmonoxid zu warnen.
(Bild: gemeinfrei)
Geesthacht – Wissenschaftler der Technischen Universität Hamburg (TUHH), der ITMO Universität Sankt Petersburg und des Helmholtz-Zentrums Geesthacht entwickelten in Kooperation mit der Universität York ein neues Konzept, um die Wegstrecken optischer Signale, die auf einem Silizium-Chip geführt werden, drastisch zu vergrößern. Sogenannte 2D-integrierende Zellen ermöglichen es, Strecken von mehreren Zentimetern auf einer Fläche von wenigen Quadratmillimetern zu realisieren. Damit wird nun in einem integrierten 2-dimensionalen optischen Chip das erreicht, was vorher nur in einem makroskopischen Volumen möglich war.
Meilenstein in Richtung miniaturisierter Gassensoren
„Dieses Konzept stellt einen Meilenstein in Richtung miniaturisierter Gassensoren dar, die zukünftig kostengünstig beispielsweise in Mobiltelefone eingebaut werden könnten, um ihre Besitzer jederzeit vor gefährlichen Gasen zu warnen“, sagt Professor Manfred Eich, Leiter des TUHH-Instituts für Optische und Elektronische Materialien und Wissenschaftler im Helmholtz-Zenrum Geesthacht. Denn: Jahr für Jahr sterben in Deutschland mehrere hundert Menschen durch die toxische Wirkung von Kohlenstoffmonoxid (CO), einem Gas, das bei Verbrennungsprozessen entsteht und sich etwa bei einem Heizungsleck in Wohnräumen ausbreiten kann. Fatal dabei ist, dass dieses Gas farb- und geruchsneutral ist, sodass es in vielen Fällen erst bemerkt wird, wenn es bereits gesundheitliche Auswirkungen hat.
Links: Schematische Darstellung einer 2D-integrierenden Zelle mit hexagonal angeordneten Reflektoren. Zwei Wellenleiter dienen dazu, ein optisches Signal in die Zelle einzufügen bzw. aus ihr zu extrahieren. In rot ist ein Beispielpfad eines optischen Signals dargestellt, das vielfach an den Spiegeln reflektiert wird und dessen Weglänge dadurch enorm verlängert wird. Mitte: Elektronenmikroskopische Aufnahme der photonischen Kristall-Spiegel mit (oben) und ohne (unten) Zugangswellenleiter. Der Maßstabsbalken kennzeichnet eine Strecke von 5 µm. Rechts: Elektronenmikroskopische Aufnahme eines optimierten photonischen Kristall-Spiegels. Der Balken zeigt eine Länge von 2 µm. Die kleinsten Löcher haben einen Durchmesser von nur 120 nm. Dies entspricht etwa dem Tausendstel des Durchmessers eines menschlichen Haares. Mittels solcher Reflektoren, die mehr als zu 99 Prozent reflektieren, konnten Wegstrecken von 25 cm auf einer Fläche mit 10 Quadratmillimeter realisiert werden.
(Bild: Eich/TUHH)
Frühwarnsystem auch für andere Gase
Darüber hinaus treten auch in der Erdatmosphäre Gase auf, die in geringen Konzentrationen zwar ungiftig für den Menschen sind, bei erhöhten Aufkommen das Wohlbefinden indes deutlich einschränken. In geschlossenen Räumen mit mehreren Menschen kann die Kohlenstoffdioxid-Konzentration innerhalb von Minuten auf ein Vielfaches der Atmosphäre-Konzentration ansteigen und eine deutliche Konzentrationsminderung, Kopfschmerzen und Schwindel bewirken. Um dem entgegenzuwirken, ist rechtzeitiges und regelmäßiges Lüften bereits ausreichend. Gassensoren können dem Risiko von erhöhten Gaskonzentrationen vorbeugen.
„Diese Sensoren sollten klein und kostengünstig sein, um uns im Alltag ständig begleiten und gegebenenfalls vor ansteigenden Gaskonzentrationen unmittelbar warnen zu können“, sagt Professor Eich. Tatsächlich sind kommerziell verfügbare optische Gassensoren derzeit aber noch groß und unhandlich, sodass sie in der Regel fest installiert und nicht transportfähig sind.
„Mit miniaturisierten optischer Gassensoren könnten künftig etwa Smartphones ausgestattet werden, die die Qualität der Atemluft für ihre Nutzer in Räumen und in Fahrzeugen in Echtzeit überwachen können.“
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://support.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.