Worldwide China

Lasserspektroskopie klärt auf

Wie groß ist ein Deuteron?

| Autor / Redakteur: Laura Hennemann* / Marc Platthaus

Teil der Laseranlage, die für das Experiment zur Bestimmung der Deuterongrösse benötigt wird. Hier werden unsichtbare infrarote Laserpulse in grünes Laserlicht umgewandelt.
Teil der Laseranlage, die für das Experiment zur Bestimmung der Deuterongrösse benötigt wird. Hier werden unsichtbare infrarote Laserpulse in grünes Laserlicht umgewandelt. (Bild: Paul Scherrer Institut/A. Antognini und F. Reiser)

Ein internationales Forscherteam hat am schweizerischen Paul Scherrer Institut mithilfe der Laserspektroskopie den Radius eines Deuterons bestimmt. Ihre Ergebnisse könnten dazu führen, dass eine der bisher am genausten bestimmten Naturkonstanten – die Rydbergkonstante – angepasst werden muss.

Viligen/Schweiz – Das Deuteron ist kleiner, als bisherige Messungen ergeben haben. Ein Deuteron ist ein sehr einfacher Atomkern, bestehend nur aus einem Proton und einem Neutron, also je einem der beiden Bausteine von Atomkernen. Eine internationale Kooperation von Forschenden hat am Paul Scherrer Institut PSI das Deuteron genauer vermessen als je zuvor. Der Radius des Deuterons, den sie erhielten, deckt sich jedoch nicht mit den Werten anderer Forschungsgruppen, sondern zeigt einen deutlich kleineren Wert.

Das Rätsel um den Protonenradius

Trotz dieses Widerspruchs gibt es auch eine Übereinstimmung: Bereits 2010 hatte die gleiche Forschungsgruppe am PSI von der Vermessung einzelner Protonen mit derselben Methode berichtet. Auch damals zeigte sich deutlich: Das Proton ist kleiner als bis dato angenommen. „Das Rätsel um den Protonradius“ nennt die Forschungsgemeinde seither diesen Umstand. Eine weitere Auswertung von Protonen-Daten aus dem PSI bestätigte im Jahr 2013 denselben kleinen Wert.

Nun also auch das Deuteron. „Dass aber unsere Methode, die Laserspektroskopie, fehlerhaft ist, glaubt inzwischen niemand mehr aus der Community“, stellt der PSI-Physiker Aldo Antognini klar. Und sein Forschungspartner Randolf Pohl, der inzwischen an der Universität Mainz forscht, ergänzt: „Nachdem 2010 unsere erste Studie herausgekommen war, fürchtete ich, dass sich ein altgedienter Physiker melden und uns auf einen groben Schnitzer hinweisen würde. Aber die Jahre sind vergangen und bis heute ist nichts dergleichen passiert.“ Und nun bestätigt auch die neue Studie – die Vermessung des Deuterons – das Rätsel um den Protonradius. „Man könnte sagen: Das Rätsel hat sich jetzt doppelt bestätigt“, so Pohl.

Neben den Wissenschaftlern am PSI waren maßgeblich Forschende an der ETH Zürich, am MPI für Quantenoptik (Deutschland), in Paris (Frankreich), Coimbra (Portugal), Stuttgart (Deutschland), Freiburg (Schweiz) und Hsinchu (Taiwan) an der Studie beteiligt.

Neue Experimente angeregt

Das neue Forschungsergebnis ist mehr als eine Verdopplung des alten Rätsels um den Protonradius: Es kann darüber hinaus der Suche nach der Wahrheit dienen. „Natürlich kann es nicht sein, dass das Deuteron – genauso wenig wie das Proton – zwei verschiedene Größen hat“, stellt Antognini klar. Also sucht die Wissenschaftsgemeinde nach Erklärungen, die die unterschiedlichen Werte wieder miteinander in Einklang bringt.

Dieser Video beschreibt das Experiment zur Bestimmung des Protenendurchmessers am PSI.

Eine mögliche Erklärung ist, dass eine bislang unbekannte physikalische Kraft am Werk ist. Das ist für die Wissenschaftler ein aufregendes Szenario, es ist jedoch sehr unwahrscheinlich.

Die näherliegende Erklärung ist eine experimentelle Ungenauigkeit. „Tatsächlich ließe sich das Rätsel sehr leicht lösen, wenn wir von einem minimalen experimentellen Problem bei der Wasserstoffspektroskopie ausgehen“, erklärt Antognini. Auf dieser Methode basiert ein Teil der früheren Messungen sowohl der Protongröße als auch der Deuterongröße.

Eine weitere Methode zur Bestimmung der Proton- und Deuterongröße nutzt Elektronenstreuung. Die Deuterongröße, die via Elektronenstreuung gemessen wurde, ist tatsächlich vereinbar mit dem neuen Wert der PSI-Forschungsgruppe, hat jedoch insgesamt eine vergleichsweise große Ungenauigkeit.

Um das Rätsel des Protonradius zu knacken, haben mehrere Forschungsgruppen, die Wasserstoffspektroskopie oder Elektronenstreuung betreiben, schon vor Jahren begonnen, ihre Experimente aufzurüsten und in der Genauigkeit zu verbessern. Darauf sind Antognini und Pohl stolz: „Hätte unser Wert mit den vorangegangenen übereingestimmt, hätte es zwar nicht dieses verflixte Rätsel um den Protonradius gegeben; aber es hätte auch niemals diese Welle gegeben, die mittlerweile weltweit zu mehreren hochgenauen Messaufbauten geführt hat“, sagt Pohl. Aktuell sind Forschungsgruppen in München, Paris und Toronto dabei, genauere Werte via Wasserstoffspektroskopie zu ermitteln. Deren Ergebnisse werden für die kommenden Jahre erwartet.

Inhalt des Artikels:

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44225326 / Wissenschaft & Forschung)